Leominster Primary School

Calculation Policy

February 2020

National Curriculum Expectation

The principal focus of mathematics teaching in key stage 1 is to ensure that pupils develop confidence and mental fluency with whole numbers, counting and place value. This should involve working with numerals, words and the four operations, including with practical resources [for example, concrete objects and measuring tools].

By the end of year 2, pupils should know the number bonds to 20 and be precise in using and understanding place value. An emphasis on practice at this early stage will aid fluency.
The principal focus of mathematics teaching in lower key stage 2 is to ensure that pupils become increasingly fluent with whole numbers and the four operations, including number facts and the concept of place value. This should ensure that pupils develop efficient written and mental methods and perform calculations accurately with increasingly large whole numbers.

The principal focus of mathematics teaching in lower key stage 2 is to ensure that pupils become increasingly fluent with whole numbers and the four operations, including number facts and the concept of place value. This should ensure that pupils develop efficient written and mental methods and perform calculations accurately with increasingly large whole numbers.

By the end of year 4, pupils should have memorised their multiplication tables up to and including the 12 multiplication table and show precision and fluency in their work.

The principal focus of mathematics teaching in upper key stage 2 is to ensure that pupils extend their understanding of the number system and place value to include larger integers. This should develop the connections that pupils make between multiplication and division with fractions, decimals, percentages and ratio. At this stage, pupils should develop their ability to solve a wider range of problems, including increasingly complex properties of numbers and arithmetic, and problems demanding efficient written and mental methods of calculation. With this foundation in arithmetic, pupils are introduced to the language of algebra as a means for solving a variety of problems.

By the end of year 6, pupils should be fluent in written methods for all four operations, including long multiplication and division, and in working with fractions, decimals and percentages.

Using this calculation policy

Teachers can use any teaching resources that they wish to use and the policy does not recommend one set of resources over another, rather that, a variety of resources are used. For each of the four rules of number, different strategies are laid out, together with examples of which concrete materials can be used and how, along with suggested pictorial representations.
The principle of the concrete-pictorial-abstract (CPA) approach is for children to have a true understanding of a mathematical concept, they need to master all three phases within a year group's scheme of work.

Addition

Key language: sum, total, parts and whole, plus, add, altogether, more, 'is equal to', 'is the same as'
Combiningtwopartstomakeawhole(useother resourcestooe.g.
eggs, shells, teddy bears, cars).
Children to represent the cubes using dots or crosses. They could
put each part on a part whole model too.
Four is a part, 3 is a part and the whole is
seven.

Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease

Finding the difference (using cubes, Numicon or Cuisenaire rods,
other objects can also be used).
Calculate the difference between 8 and 5 .
:---
haveusedorusethebarmodeltoillustratewhat they need to
calculate.

Find the difference between 8 and 5 .
8

Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition 3×4 $4+4+4$ There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	$\begin{aligned} & 3 \times 4=12 \\ & 4+4+4=12 \end{aligned}$
Number lines to show repeated groups- 3×4	Representthispictoriallyalongside anumberlinee.g.:	Abstractnumberline showingthree jumps of four. $3 \times 4=12$
Cuisenaire rods can be used too.		

Division

Key language: share, group, divide, divide by, half

Sharing using arange ofobjects. $6 \div 2$

2d \div 1d with remaindersusinglollipopsticks. Cuisenaire rods, above Childrento represent the lollipop sticks pictorially. a ruler can also be used.

There are 3 whole squares, with 1 left over.
Sharing using place value counters. $42 \div 3=14$

$000 \bigcirc 00$	
$\mathbf{1 0 s}$	$\mathbf{1 s}$

		$=14$	$\begin{aligned} & 000000 \\ & 000000 \end{aligned}$	
10s	1s		10s	1s
\bigcirc	0000		-	
\bigcirc	$\bigcirc \bigcirc \bigcirc 0$		\bigcirc	
\bigcirc	$\bigcirc \bigcirc \bigcirc$		\bigcirc	

There are 3 whole squares, with 1 left over.

Children to represent the place value counters pictorially.

$13 \div 4-3$ remainder 1
Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line.
'3 groups of 4, with 1 left over'

Childrento be able to make sense of the place value counters and write calculations to show the process.
$42 \div 3$
$42=30+12$
$30 \div 3=10$
$12 \div 3=4$
$10+4=14$

Make 615 with place value counters.
How many groups of 5 hundreds can you make with 6 hundred counters?
Exchange 1 hundred for 10 tens.
How many groups of 5 tens can you make with 11 ten counters?
Exchange 1 ten for 10 ones.
How many groups of 5 ones can you make with 15 ones?

Representtheplacevaluecounterspictorially.

Children to the calculation using the short division scaffold.

Long division using place value counters $2544 \div 12$

1000s	100s	10s	1s
-O	$\ominus^{\text {-®®® }}$	0000	0000
1000s	100s	10s	Is
		-000	రणరం

We can't group 2 thousands into groups of 12 so will exchange them.

We can group 24 hundreds into groups of 12 which leaves with 1 hundred.

$$
\begin{array}{r}
12 \frac{02}{23544} \\
\frac{24}{1}
\end{array}
$$

After exchanging the hundred, we

After exchanging the 2 tens, we
have 24 ones. We can group 24 ones
into 2 group of 12 , which leaves no remainder.

Conceptual variation; different ways to ask children to solve $615 \div 5$

Using the part whole model below, how can you

divide 615 by 5 without using short division? | between 5 bank accounts. How much will |
| :--- |
| be in each account? |

Mathematics Coordinators: James Grant and Amanda Brookes
Date of last review: February 2020
Date of next review: July 2021

